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Abstract

We study here the discretisation of the nonlinear hyperbolic equation u; 4 div(v f(u)) = 0 in IR? x R4, with
given initial condition u(.,0) = uo(.) in IR?, where v is a function from IR? x IR to IR? such that divv = 0 and
f 1s a given nondecreasing function from IR to IR. An explicit Euler scheme is used for the time discretisation of
the equation, and a triangular mesh for the spatial discretisation. Under a usual stability condition, we prove the
convergence of the solution given by an upstream finite volume scheme towards the unique entropy weak solution
to the equation.

1 Introduction

We consider here the following nonlinear hyperbolic equation in two space dimensions, with initial condition:

{ ut(x,t)—|—div(v(x,t)f(u(x,t)3

) =0, ¢ € IR? tin IRy,
u(,0)

=uo(z), « € TR? (1)

where u; denotes the derivative of u with respect to ¢, div = Z d;, where 9; denotes the partial derivative w.r.t.

i=1
the i-th component, «;, of z € IR? ; v is a function from IR? x IR} to IR?, of class C', such that divv = 0
and SUP(; )R 2 xIR 4 |v(z,t)] = V € IR, where |.| denotes the euclidian norm on IR? ; f a given nondecreasing

function of class C* from IR to IR, and uo a given bounded function with compact support. Let be a triangular
mesh and k the constant time step (the generalisation to variable time steps is straightforward). Let us discretise
equation (1) using the explicit Euler scheme for the time discretisation and a finite volume scheme with upstream
weighting for the spatial discretisation. The discrete unknowns are the values u’%, n € IN, K € , given by the
numerical scheme (2) (described below) ; the value u% is expected to be an approximation of the mean value
of u in the triangle K € at time ¢, = nk. In order to describe the scheme, some notations are required. We
denote by z.y = (2')y the scalar product of + € R? with y € R®. Let K €, we denote by S(K) the area of the
triangle K, by ¢;(K), 1 = 1,2, 3 the sides of K, and nx ; the normal to side ¢;(K), outward to K. Let A denote
the set of edges of the mesh ; for a € A, I(a) is the length of the edge «, n} a unit normal vector to a such that
venp > 0, where v®.nj denotes the mean value of v(.,1,).n} on the edge a, K'* (resp. K2'7) the upstream
(resp. downstream) triangle to a at time i,, i.e. such that there exists 1 € {1,2,3} such that a = ¢;(K}'T) (resp.
a =¢i(Kz77)), and N, = =nj (resp. n = —nj). The numerical scheme requires an approximate value,

KD~
{u"}a, of u on any edge a at time t,, ; since f' > 0, {u"}, is taken to be the upstream value, i.e. {#"}, = u” A

We may then define the upstream finite volume scheme by :

n+1
i n “I‘S +Z ) ving: f({u"}eyxy) =0, ¥V K in , ¥ n in I,

(2)
Y = %/Kuo(x)dx, vV K in |
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We recall that v?.nx; denotes the mean value of v(.,t,).nx; on side ¢;(K). Let the approximate solution at
time ¢, be defined by : u"(z) = uf if + € K, so that, for a given mesh and a time step k, the approximate
solution is defined everywhere by :

ur(z,t) =u"(x), for t €[nk,(n+1)k[, =€ R2. (3)

The aim of the present paper is to show the convergence (in a convenient topology) of u . towards the (unique)
entropy weak solution « to (1), when the time step and the ”space step” go to zero. To this purpose, we shall
need some nondegenerescence assumptions on the mesh (very much like those used within the framework of finite
element methods) and a classical stability assumption on the time step. More precisely, let «, 3 be two fixed
positive real numbers, we consider meshes such that there exists h € IR}, (the "space step”) satisfying :

ah®> < S(K) <Bh’, VYV Ke,

(4)
ah < la) < Sh, vV ae A

We assume the following stability condition on the time step :

SUKZ)

k < - . @
T 2l(a) |vrni| M

(1-¢), VacA V nel, (5)

where ¢ > 0 is a given number, M = sup (f'(s),s € [-U,U]), and U = ||uo||cc. We denote by ||.||, the norm on
LP(IR?) or LP(IR? x IRy ), for 1 < p < co. Note that, when the nondegenerescence assumptions (4) are satisfied,
ah

the global linear condition between h and k : k < m(l

— ¢) implies condition (5).

We then prove the following theorem :

THEOREM 1

Let v be a function from IR? x IR 4 to IR?, of class C*, such that divv = 0 and SUP(4 1)eR2 xR 4 |v(z,t)|=V e R,
f a given nondecreasing function from IR to IR, of class C, and uo a given bounded function with compact support

; consider the space and time discretisations and k satisfying assumptions (4) and (5), let u be the entropy weak
solution to (1) and u . be the approzimate solution given by (2), (3); then :

(stability of the numerical scheme)
llw,klloe < lluolloo, (6)

(convergence of the numerical scheme)

ur —u as h—0, in Lfoc(]R2 xIRy) for any finite p. (7)

The originality of this result lies in the two-dimensional space dimension and the absence of assumptions on
the mesh (other than the classical nondegenerescence assumptions (4)). For the one space dimension problem,
convergence results have been obtained by several authors for the upstream weighting scheme, and also for some
more general equations and schemes (the Godunov scheme for instance, and higher order schemes). Most of these
results use some kind of L* stability and ”BV-stability” (?TVD” schemes, for instance), see Godunov (1976),
Osher (1984), Harten (1983). In particular, the BV stability is used to obtain the relative compactness in Lj,,
of a family of approximate solutions. This result allows the passage to the limit in the nonlinear term of the
equation. These methods may be generalised for two space dimensions problems for first order schemes (such as
Godunov) on rectangular meshes, at least for constant v (see Crandall, Majda (1980), Sanders (1983)). Technical
difficulties appear for higher order shemes or when nonrectangular meshes are used (i.e. in the case of triangles
or irregular quadrangles). Indeed, the L stability result still holds, but it seems that the BV-stability result is
no longer valid. The L* stability is not sufficient to prove convergence (even in the linear case, see Champier,
Gallouét (1992)). Another estimate on the spatial derivatives of the approximate solution (weaker than the BV
stability) will be used to prove convergence. It is obtained by using the numerical diffusion of the scheme (see
Section 3). This technique was developped for the nonlinear equation (1), but may be easily extended to more
general equations and schemes. It may also be used for other types of finite volume methods, for instance those
using nodal values as discrete unknowns (sometimes called ”cell vertex” methods) instead of cell values (”cell
centered” methods), see Eymard, Gallouét (accepted). Other authors have also obtained convergence results with



a different nonlinearity Cockburn et al. (submitted) (and for higher order schemes on rectangles). In Cockburn
et al. (submitted), the nonlinear term v(z,t)f(u) is replaced by a function f(u) , where f is a function from IR
to IR?. Their convergence result, however, is proven via a weak estimate on the spatial derivatives which requires
restrictive assumptions on the mesh (and either an additional assumption on the nonlinearity, or a uniform bound
by below of the numerical viscosity of the scheme). Note that, even if v is constant, these assumptions cannot
hold in our case since, in particular, v?.nZ may be equal to 0, and f’ may be equal to 0 (even on whole intervals
of IR).

We shall prove the above theorem in the following sections. The L stability is given in Section 2. In Section 3,
we introduce a ”weak BV stability” estimate and prove it. Section 4 is devoted to the equation which is satisfied
by a possible limit of a family of approximate solutions. In Section 5, we prove that this same possible limit
satisfies some entropy inequalities. Finally, we use the two above sections and a generalisation of a result by
DiPerna to prove the convergence of the numerical scheme (in Section 6).

2 Stability estimates

In this section, we prove the following stability result :

ProrosiTiON 1. Let v be a function from IR? x R4 to IR?, of class C, such that divv = 0 and
SUDP(4 1)elR2 xTR 4 [v(z,t)) = V € R, f a given nondecreasing function from R to IR, of class C', and wo a
given bounded function with compact support ; consider the space and time discretisations and k satisfying the
following stability condition :

S(K3™)
k< 4 7 V aeA, ¥V nelN, 8
T 2l(a) |vh.nZ| M ®)
where M = sup  f'(s), where U = |luo||eo ; let w3 and uj be defined by (2) and (3), then :
s€[-TU,U]
mlnu1r<mmu1' <maxu1' <maxuy, V n€lN, (9)
Ke Ke Ke Ke
and therefore :
llw,klloe < lluolloo- (10)

PROOF. Integrating the equation divv = 0 at time ¢,, over any cell K € | we obtain :

3

> Uei(K)) Viar, =0, ¥ K €.

=1

Hence, the numerical scheme (2) leads to :

u?\-l-l = uI\ + Z aI\ )t {u } i(K) ?\')a

where
0 if Vi ng i >0,
afi = k e JHu o) — fuk)
’ Hci(F "K,
R T P

(With the convention that a%; = 0 if {u"}.,(x) = vk.) Therefore,

+1 2 : 2 :
u?\ (1 - aI\ )t uI\ + aI\ z{u ci(K)-

=1

if ving,; <0,



From this it is easily seen that (9) and (10) hold, and that u}*" lies in the convex hull of % and {6}, x0),
i=1,2,3.

REMARK 1. Under the assumptions of Proposition 1, we can also prove the following L' estimate :
D SR <Y S(K)uk] ¥ on e, (11)
Ke Ke

and therefore :
llui (1)l < Jluoll ¥V t € IRy (12)

The proof of Assertions (11) and (12) requires some further notations and is taken care of in Remark 5 of Section
5. Actually, these estimates will not be needed in the sequel.

REMARK 2. Note that Condition (8) is weaker than Condition (5) which we assumed in Theorem 1.

3 A Weak Estimate on the Spatial Derivatives

ProprosiTION 2. Let v be a function from IR? x IRy to IR?, of class C', such that divv = 0 and
SUP(; )2 xIR 4 [v(z,t)] = V € IR, f a given nondecreasing function from IR to IR, of class C', and uo a
given bounded function with compact support ; let { > 0 and consider the space and time discretisations and k
satisfying condition (5), let u’ be defined by (2) ; then there exists C > 0, depending only on f,ug and {, such
that :

Z Do vrnEl Ua) 1f () = fuf-) < C. (13)

a
n=0 a€A

PrOOF. Multiplying the numerical scheme (2) by f(u%) and remarking that

3

> Uei(K)) Vg, =0,

=1

we obtain :
un+1 u” 3 . " un\’ 2
S(K) = f(uk) +Z ) vimn, | f({e" Ve f gy = YW (14)

3
We set F(¢) = / f(s)ds, ¥V ¢ € IR. We may assume, without loss of generality, that f(0) = 0, so that, since f

0
is nondecreasing, F' > 0. Then :

nt1
“K

(Wi — ) () = F(ul) — F(ul}) — / (@) - S e (15)

K

Using (14) and (15), and after summation on n and K, we obtain, for any N € IN :

IRCHT IS S 3 ' F 000 - sy

e o . (16)
+3 3 (e K)) Vo, [ F{u e f (u%—@] =0



In (16), all summations are finite because ug and therefore all «™ have compact supports. Replacing the sum on
the triangles by a sum on the edges, the last term of the left hand side of (16) becomes :

S Sty T [ oo - LD
n=0 K& (17)

=—ZZ ) VTRE] [ F(fp) = S (W)

n=0 a€A

We now prove that the third term of the left hand side of equation (16) is smaller than the term given in (17),
which is nonnegative, and which is in fact the expression which we want to estimate in Proposition 2. In order to
do so, using the numerical scheme (2) and the fact that (e +5)* < 2(a® + b*), we obtain :

(os)/:K (f(&) = fluk))dé <MM

M E e - 2

<— Wei(K)) Vi, (f({u"}e,x)) — fluk))

2(5(K)) > ( |

M E < . 2
<— Wei K)) v f({u" o) — fluk)) | -

sy 2 | e )

Therefore :

3

sz_jz Z lei(K) Il [0 i) = 0] (1)
)

Ke =1

a

Z Sy vl [F@) = F0)] ’
A

Using the stability condition (5), (18) yields :

Z_:Z S(lf() /M:K (F(&) = Fluk))d¢
<= : . . (19)
ZZW (@) 1f(ufns) = flufn, =)

n=0 a€A

Using (17) and (19) in (16), and the fact that F' > 0, we obtain :
N
n S(K
50 3 W e} 1F0p0) — Sy < U bt
€A
/ F(ug(z)dz.
R

/}RQ F(uo(x)dz.

In the following, we shall need a straightforward consequence of Proposition 2, which we now state.

l\3|‘f\

Since, in (20), N is arbitrary, Proposition 2 is hence proven with C' =

YIS

COROLLARY.
Let v be a function from IR? x IR 4 to IR?, of class C*, such that divv = 0 and SUP(4 1)eR2 xR 4 |v(z,t)|=V e R,

f a given nondecreasing function from IR to IR, of class C, and uo a given bounded function with compact support



; let ¢ > 0 and consider the space and time discretisations and k satisfying conditions (4), with h <1, and (5)
; let u’y be defined by (2). Let v, T > 0 ; then there exists Cr,7 > 0, depending only on uo, f,v,a,,{,r and T,
such that :

Np
n n 1
D kY vzl Ha) (W) = f(hn )| < CrrhT7, (21)

n=0 a€EA,
where k(N — 1) < T < kN7 and A, = {a € A;a 0 B(0,r + ) # 0}.

REMARK 3. The left hand side of (21) can be seen as the norm, in the space of Radon measures on
B(0,r) x [0,T], of div(vf(u)). Thus, the above corollary states that this norm may tend to infinity when h

tends to 0, but no faster than h=3. Also note that inequality (21) does not imply an inequality of the type

Np
_1
kD> Ua) Jufns —wn | S CLphTE,

n=0 a€A,

since ' or v*.n% may be equal to 0.

4 The Equation for a Limit of a Family of Approximate Solu-
tions

When and k satisfy the stability condition (5), then, by Proposition 1, the family (v x ) x) is bounded in L (IR? x
IR.); we may therefore assume that » ; tends towards a limit  in LOO(]R2 x R4 ) for the weak star topology,
when h tends to 0 (in fact, as usual, from any sequence ((i, k:))icw, with (i, k) satisfying (5), for all ¢, we may
extract a subsequence (((s), ks(+)))iew, such that (us(,)yks(,))iG]N converges in L™ for the weak star topology). At
this point, we have no strong convergence result on u x (in Llloc(]R2 x IR ), for instance) ; therefore, since f may
be nonlinear, we cannot assert that f(u ) tends to f(u). Indeed, one of the major difficulties to be overcome
here is that the weak estimate on the spatial derivatives, which we proved in Section 3, does not give the relative
compactness of (ux)(x) in Li,.(IR> x Ry ) ; the compactness of (u,x)( ) in Lj,.(IR* x IR 4) was obtained in most
previous works on the subject (in the case of one space dimension or two space dimensions with a rectangular
mesh) by a BV estimate ; more precisely, the compactness of (u x)x) in Li,.(IR? x IRy ) is a consequence of the
L stability (cf (10)) and of an estimate of the type (with the notations of the above corollary) :

Np
Zk Z l(a) |u?\,:,+ - U?\»:,—| <,

n=0 a€EA,

which does not seem to hold in our case. We may only assume, and we shall in the sequel, that, for any continuous
function g, from IR to TR, g(w,x) converges to a limit ug in L®°(IR? x R4 ) for the weak star topology, as k tends
to 0 (as stated above, we are in fact working with convenient subsequences). Assuming that u; tends to « and
f(ux) tends to gy when h tends to 0, (, k) satisfying assumptions (4) and (5), we now prove that u;+div(vus) =0
and u(.,0) = ug(.) in a weak sense which we state in the following proposition :

PrOPOSITION 3. Let v be a function from IR? x IRy to IR?, of class C', such that divv = 0 and
SUP(; )R 2 xIR 4 [v(z,t)) = V € R, f a given nondecreasing function from R to IR, of class C', and wo a
given bounded function with compact support, let and k satisfy conditions (4) and (5). Let u be given by (2)
and (3). Assume that w — u, f(u ) — ps, in L(IR? x IRy) for the weak star topology, as h — 0. Then :

/]R2X]R+ (u(z, tyoi(z,t) + pe(z,t)v(z, t).grade(z, t))dedt + /]R2 uo(2)p(0,z)dz = 0, (22)
¥ o € CHIR? x [0, +oo[,IR).



PROOF. Let uj be given by (2) and (3). Let ¢ € C}(IR? x [0, 4cc[, R). Let n € IN, & € K ; we multiply (2) by
¢(z,ty,), and integrate the resulting equation over K. We then sum for n € IN and K €

+ o0 un-l-l u?’
Y [
n=0 Ke 7K

n=0 K&

(23)
h ZZ S(K / Zl (K)) vinx: f({u"}eir)) @(z,tn)dz = 0.

The proof of (22) starts from (23) and is decomposed into two steps, where we study successively the first and
second terms of the left hand side of (

23).

Step 1. We study here the limit of the first term of the left hand side of (23) as h tends to 0

+o0

S [ e =

n=0 K& (24)
zz/ R e CED DY R

Ke

Using the convergence of uj in L®(IR? x IR4) for the weak star topology and the convergence of «° to wo in
L*(IR?), (24) yields :

+o0
Y[ i -

n=0 K&
—/ u(z,t) got(x,t)dxdt—/
R2XIR 4

uo(z)p(z,0)dz, as h — 0.
R2

This gives the limit of the first term of the left hand side of (23) as h — 0

Step 2. Let us now study the second term of the left hand side of (23) and prove that

ZZ S(K) /\ Z (K)) ving: f{u"}e k) ele, tn)de —

n=0 K&

(26)
pr(z,t) v(z, t).grade(s,t) dedt, as h — 0.
R2XIR 4

Once (26) is proven, we deduce from (25) that

/]R2 N (u(x,t)got(x,t)—l—uf(x,t) v(x,t).gradgo(x,t))dxdt—l—/ uo(z) @(0,z)dz =0,

R2

so that the proof of Proposition 3 is complete. In order to prove (26), we first write that, since f(ux) — py in
+co
L(IR? x R4 ) for the weak star topology (and Z n)grade(., tn)lf, 1, — verady in L' (IR? x R4)) as
n=0
h goes to 0,

kZZ/ fluf) (v.grade)(z,t,)ds —

pe(z,t) (v.grady)(z,t)dsdt
n=0 K& ]R2><]R+

(27)



Thus, if we prove that :

kZZ S(K) / Z (K)) vink: f({u"}ex) ele, ta)de

n=0 K& (28)

+kZZ/ fu%) (v.grady)(z,tn)dx — 0, as b — 0,

n=0 K&

the proof of (26) is complete. In order to prove (28), we introduce the following functions : let px,; be the affine
function defined from K to IR? by :

pI\",i(CE)J’lI\",] = 6i7J V LS C]([()’ Z’] = 1a 2a 3a (29)

where 6; ; is the Krénecker symbol (note that these functions are the shape functions of the mixed finite element
method). We set :
Pl(z)= f(ur)v(z,tn), V z €K, V neN. (30)

3
Since ZPK,i(%)H%’,i = ( (1) (1J ) for all z € K,
i=1

Zf (vk) v(z,tn)nr; pPri(z), V z€ K, V nelN. (31)

We also set :

Zf {u (I\ Vi ng i pKyi(x), v fo(, vV n € IN. (32)

1(ci(K))

Since P"|K:,+~HZ =P S(K)

|I\n -.ngy, V a €A, and div(px:) = , we obtain :

/2P"(x) grade(z, ty)de :—/ div(P"(z)) ¢(z,tn)dz

:_Z/ Zf {u"}eyz)) VvVinr; div(pri(z)) o, tn)de

__Z/I,mzl( (K)) fHu o)) Ving: ¢(z,tn)de

We may then write R defined in (28) in terms of P7 and P" :

+c0
R:kZZ/ (P™(z) — P"(2)) grade(z,t,)ds. (33)

n=0 K&

Under the assumptions (4) of nondegenerescence of the mesh, there exists € depending only on « and f, such

that |[px,i(z)| < C1,V 2 € K,V K €,V i€{1,2,3}. Therefore :

400
Rl<ory S / Z () = F " escro)] Pl +

n=0 K& K

(ot - mnf(um) lgrade(s, ()| da.

Let v and T such that supp ¢ C B(0,7) x [0,T[, Nz such that : k(Np — 1) < T < kN7 and A, = {a € A,
aNB(0,r + B) # 0}. There exists C>, depending only on ¢, «, 8, v, up and f, such that for h < 1,

Np
R < Cokph® Y V] [f(Wn ) = f(ufn )|+ Cah

n=0 a€A,

<2 khZZ ) VImd] [f () = F(ufn <)l + Cah

n=0 a€A,
< CT,TGQEh% + Coh,
o



where C). 7 is defined in the corollary of Proposition 2. Hence, R goes to 0 with h, which proves Proposition 3.

REMARK 4. In order to prove the convergence of the numerical scheme, there remains to show that gy = f(u)
and that u is the entropy weak solution of (1). The only possible limit of a sequence of approximate solutions
(with conditions (4) and (5) satisfied) is then the unique entropy weak solution u to (1), and, by a classical
argument, we deduce that u ; tends to « as h tends to 0, in LOO(]R2 x IRy ) for the weak star topology. Of course,
in the linear case (i.e. f(u) = u), Proposition 3 proves the convergence of u j to win L= (IR? x IR ) for the weak
star topology, as h goes to 0 (with , k satisfying Conditions (4) and (5)), and u is the weak (entropy) solution to

(1).

5 The Entropy Inequalities

We assume here that, when h tends to 0 ( and k satisfying conditions (4) and (5)), g(u x) tends to pg for any
continuous function g from IR to IR (which is, in fact, true for convenient subsequences of sequences of approximate
solutions). We already know, by the preceding section, that u; +div(vus) =0 and u(.,0) = ug(.) in a weak sense
(see Proposition 3). (Recall that « = prq.) In this section, we prove the following entropy inequalities :

ProProsITION 4
Let v be a function from IR? x IR 1 to IR?, of class C*, such that divv =0 and SUP(4 1)eR2 xR |v(z,t)|=V e R,

f a given nondecreasing function from IR to IR, of class C, and uo a given bounded function with compact support,
let and k satisfy conditions (4) and (5), and u i be given by (2) and (3). Assume that, for any continuous function
g from R to IR, g(ux) — pg, in L¥(IR* x IRy) for the weak star topology, as b — 0. Then, for any convexr
function n from R to R of class C* and ® such that ®' = y'f’ :

/]R2XJR+ |:U7](13,t)99t($,t) + lhp(x,t)v(x,t).gradcp(x,t))] dzdt + /]R2 n(uo(m))cp(O, z)dz > 0, (34)
V o€ CHIR? x [0, +oo[, IR4).

PROOF. Let u j be given by (2) and (3), and k satisfying conditions (4) and (5). Let n be a C' convex function,
O(s) = / n' (o) f'(0)de. Let ¢ € CH(IR? x [0, 400, IR4). Let » € IN, multiplying (2) by #’(u%), we obtain :
0

1 n 3

n+
Uy —UK 4/ m 1 o — o
e (uR) + mZ_:z(cl(ﬁ)) ving, f({u"Yem) n'(uk) =0. (35)
Note that :
wrtt
K
) =) = [ e
YK wrtt
! n n+1 n K ! 1yon
=i =+ [ 000 - o) de
ui
Thus, we may write (35) as
Zp —BEr + Xy +Hyp=0, ¥V K€, ¥V neN, (36)
where:
7 1 n
Zx = E 77(“1\+1) —n(uk)),
n+1
1
By ==
K k

3

/ (&) — o' (uk))
n _ 1 Ve .
Xk = 5% )Zl< {(K)) Ve {u e o0),

;= S(K)Zz( () VR (0 e0) o'ui) = O({u" o).



In a similar way as in the proof of Proposition 3, using the fact that g(u i) — pg (in L°(IR? x R4) for the weak
star topology) when A — 0 for any continuous function g, it can be proven that :

kZZ/ ZEo(z, ty)dedt —

n=0 K¢& (37)

_/ ] u,,(x,t)got(x,t)dxdt—/ n(uo(x))go(x,O)dx as h — 0.

R2

We prove thereafter that :

+c0
kZZ/ Xpo(z,tn) dxdt—>—/]R pa(z,t) v(z,t).grade(z,t) dzdt, (38)

n=0 K& 2><]R-i-

and that
Hx >FEx, ¥V K€, ¥V nelN. (39)
Assertions (36) — (39) yield :

/ [un(x,t) oz, t) + pa(z,t) v(x,t).gradgo(x,t)] dxdt—l—/ n(uwo(z)) ¢(0,z)dz > 0,

R2

which completes the proof of Proposition 4. There remains to show assertions (38) and (39), which we now turn
to in steps 1 and 2 below.

Step 1. (Proof of Assertion (38)). We introduce here similar entities to those we did in the proof of Proposition
3:

Ql(z) = ®(ux) v(z,tn), V z €K, V nelN. (40)
Note that :

Z(I) (vk) v(z,tn)nr; Pri(z), V z€ K, V nelN, (41)

where px ; was defined in the proof of Proposition 3 (see (29)). Let :
Z(I) {u l(]\ Vi ng i pKyi(x), V ¢ € f(, V n & IN. (42)

On one hand, we write that :

kZZ/ Q™ ( grado(z, t,)de = —kZZ/ d1V go(x,tn)dx

n=0 K& n= 0 Ke
= —kZZ/ (ci(K)) vimr: ®({u"}eim)e(2, tn)de
n 0 Ke
:—kZZ/XI\ (0, tn)da
n=0 K&
On the other hand, since ®(u i) — pso in L°(IR? x IR4) for the weak star topology,
+ oo
kZZ/ QI (z) grade(z,t,)dr — pa(z,t) v(z,t).grade(z,t)dedt, as h — 0.
n=0 K& ]R2><]R+

Therefore, Assertion (38) is proven provided that :

k ZZ/ Ql(z (x))gradga(x,tn)dx — 0, as h — 0. (43)

n=0 K&
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In order to prove (43), we first notice that, since f' > 0, for any real numbers @, b such that @ < b, there exists
b
¢ €]a, b such that : ®(b) — ®(a) = / n'(s)f'(s)ds = 9’ (c)(f(b) — f(a)). Therefore, |®(ul) — S({u"},m0))| <

sup  |n'(s)| |f(uk) — FHu Yeym), ¥V K€,V nelN,V i €{1,2,3} (where U = ||uo||o). Using the weak
s€[-TU,U]

estimate on the spatial derivatives (21), we derive (43), in a similar way to the proof of R — 0 (using (33)) in the
proof of Proposition 3.

Step 2 (Proof of Assertion (39)). We are now going to prove that
Hig>FEr, ¥V K€, ¥V nelN. (39)
3
(Note that E% > 0.) Since Zl(ci([x’)) vr.ng,; = 0 (because divv = 0), we may write :
i=1
3
n 1

5 = gy 2o (o) V7 [(F(00 b = £k ' (k) = (910" 0) = @) )|

1=

Thus :

3 {u™}e, (%)

H}@:%Zl(ci(]()) ving, /n

“K

710 (o' (k) = o'(€) ) de. (44)
(At this point, using f’ > 0 and the fact that n’ is nondecreasing, we may remark that Hz > 0.) Recall that :

+1

g=p [ (r@-wii) a (15)
and s
G =+ S e (e aoo) - 1wh),
where -

0, if ving,; >0,
bics = % (ei(K)) WP mx,|, if vimg, < 0.

Condition (8) (which is implied by condition (5)), yields :
1
2M’
(Recall that M = sup(|f'(s)|, s € [-U,U]), where U = ||ug||cc.) Assertion (39) is therefore a consequence of the
following lemma :

0<b%,; < V Ke, VvV nelN, V ie{1,2 3} (46)

LEMMA. Let U € RY, a,b,c € [-U, U], f a nondecreasing C* function from R to R, M = sup(|f'(s)],s €
[-U,U)). Let v, § >0, such that :
1 1
< — < —
"Sar ‘Sar

and n be a C' convex function from IR to IR. Then :

a+~y(f(b)—Ff(a))+6(f(c)—F(a)) b
/ (€)= n'(a)de <~ / P (€) — n'(a))dé

+ o6 / PO() = ' (a)de.

a

Assertion (39) is deduced from the above lemma in the following way. For n € IN and K € | there exists
i € {1,2,3} such that v?.nx; > 0 ; we may therefore assume that, for instance, v?.nx,1 > 0, so that b}l\»yl = 0.
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Assertion (39) is then a consequence of (46) and of the lemma, with : ¢ = ufk, b = {u"},(x), ¢ = {u"}e x),
U = |luollco, ¥ = bF 2, 6 = bF 5 (noting that, when b% ; # 0, v.nx; < 0). In order to complete the proof of Step
2, and thereby of Proposition 4, there remains to prove the lemma.
PROOF OF THE LEMMA : We first remark that (47) is equivalent to :

et (f(O)=FlaN+o(f(e)=F(a]) b ) < )
/ n(€)d¢ < 7/ FEm(&)ds + 5/ fHEm (§)dg. (48)

a

For ¢ € [0,1], we set :

x(t) = n(a + 2t4(f(b) — fa)) +2(1 — )6(f(c) — f(a))) — nla _2,57/ (e e

2(1—-1)8 /f §)dg,

so that (48) can be written X(%) < 0. Noting that x'(¢) = (2v(f(8)— f(a))—=26(f(c)—f(a))) 7' (a+2tv(f(b)— f(a))+
2(1 = 8)8(f(¢c) — f(a))) — D, where D does not depend on ¢, and that n’ is nondecreasing, we may assert that x’
is nondecreasing, i.e. y is convex. Assertion (48) is therefore valid if x(0) < 0 and x(1) < 0. The proofs of these
two inequalities are identical, and we shall prove the first one, that is :

a+25(f(c)—f(a)) c
/ W (€)de < 26 / F(En' (€)de. (49)

Let | = w, and g = M 1[q 441, Where [a,a + 1] = [a,a + 1] if 1 > 0, and [a,a +1] =[a +{,a] if | < 0.
Note that @ +{ lies between @ and ¢. Now :

/ (FUE) - g€ (€)de = / (FUE) = g€ (' (€) = n'(a + )de > 0,

/ GRGLE / )(E) (Ede= M / "

. . . . 1 [o* . . .
Since n’ is nondecreasing, the application I — 7/ n/(f)df is also nondecreasing and, since | =
a

so that :

f(e) = f(a)
M b

we have |l| > 26| f(c) — f(a)| (because of the assumption § < ; thus, we deduce that :

1
o7

1 fot2stf(e)=1f(a) ,
[ 1@ oz g uers

The proofs of the lemma and of Proposition 4 are thereby complete.

REMARK 5. Proof of assertions (11) and (12) of Remark 1.
We show here that, under the assumptions of Proposition 1, the following inequality holds for any C' convex
function 7 :

D S(En(uiy <> S(Kyn(uk), ¥ on €N, (50)
Ke Ke

which yields (11) of Remark 1 by taking a family of C' convex functions (9.).>o converging uniformly on IR
towards the function s — |s| (recall that the number of nonzero terms in the sum over K € is always finite).
In order to show (50), using the notations of Proposition 4, we remark that :

> S(K)( (uiF) — n(u}z)) =k S(K)ER - Hp) = k> S(K)XF.

Ke Ke e
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In Step 2 of the proof of Proposition 4, we showed that E% < Hx under the assumptions of Proposition 1 (i.e.
Assumption (8) was used, and not Assumption (5)). Since :

SN =0 (e K) VTR @ ({u" 1) =0,

Ke Ke =1

Assertion (50) is proven.

6 Proof of Theorem 1

In this section, we generalise a uniqueness result of DiPerna (cf DiPerna (1985), see also Szepessy (1989)) to show
that proposition 4 imply that @y = g(u) for all continuous function g from IR to IR (recall that pg4 is the limit of
g(ux), in L®(IR? x IR4) for the weak star topology, and u = pisq), so that ux tends to w in LY (IR x IR4) for
any finite p, and w is the unique entropy weak solution to (1).

THEOREM 2 Let r > 0, v be a function from IR? x IRy to IR?, of class C, such that divv = 0 and
SUP(4 1) eR? xTR 4 [v(z, )] =V € IR, f a given nondecreasing function from R to IR, of class C*, and uo a given

bounded function. Let (u(m))mem be a sequence of bounded functions from IR?> x IRy into IR such that
lul™|[ <7,V meN, (51)

and such that, for any continuous function g from IR to IR, g(u(m)) converges to pg in L°(IR* xR 1) for the weak
star topology ; assume that for all C* convex function 5 from IR to IR, and ® such that ®' = f'y’ the following
assumption holds :

/]R2X]R+ pn(z, )oe(z, t) + pa(z, t)v(z, t).gradp(z, t))dodt + /]R2 n(uo(z))e(0,z)dx > 0, (52)
Y o€ CHIR? x [0, +oo[, IR 4).

Then u'™ tends to u in ¥ (R? xR4) for any finite p (and in L°(IR? x IR4) for the weak star topology), as m
tends to infinity and u is the entropy weak solution to :

we(z, t) + div(v(z, t) f(u(z,t))) =0, ¢ € R%*t € IRy, (1)
u(e,0) =wo(x), = € IR

PrOOF OF THEOREM 2 : Throughout this proof, we denote by @ the (unique) entropy weak solution to (1).
Since ||u(m)||oo < 7, and g(u(m)) — pg in L=(IR? x IR4) for the weak star topology, there exists, for all y =
(z,1) € R* x R4 a probability v, on IR, supported inside [—r, r], such that, for any continuous function g from

IR to IR, and for a.e. y € R? x IRy, py(y) = / g(M)dvy(X). Remarking that bounded functions from R* x IR 4
s}
to IR can be uniformly approached by linear combinations of characteristic functions of sets of IR? x IR, we may

also assert that, for any ¢ € C(IR,IR), and any v € L®(IR? x IR4), the sequence (|g(u(m)) — 9|)sm has a limit in
LOO(]R2 x IR y) for the weak star topology, denoted by pi|g_,|, which satisfies :

Hig—v|(z,t) = / lg(A) — v(z, t)|dve ¢ (X), for ae. (z,t) € R? x Ry. (53)

The application v : y — v, from IR? x IR 4 into the set of probabilities on IR is an entropy measure valued solution
to (1), i.e. satisfies (52) (see Gallouét, Herbin (accepted) ; note that DiPerna gave a definition of entropy measure
valued solution in the case v constant, with a somewhat stronger formulation for the initial condition). We show
below that this is sufficient to assert that vy = b5, for a.e. y € IR? x IRy, where @ is the (unique) entropy weak
solution to (1). We only give here a sketch of proof of this result (a detailed proof may be found in Gallouét,
Herbin (accepted), this is essentially a generalisation of the uniqueness result of Di Perna, see Theorem 4.2 in
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DiPerna (1985)). We show then that «(™ — @ in L},.(IR? x R4), as m — +oo. The proof of Theorem 2 will
then be complete.

We decompose the proof into three steps. Let @ > 0 and w = V My, with My = sup f'(s), where b = sup(r, U)

sE[—b,b]
and U = ||luo|[oo- For R >0, we set Br = {z € IR?,|¢| < R}. We define :
A(t):/ pira—m(z, )z, 0<t< =
Ba—wt w
In Step 1 below we prove that :
A(t1) < A(t2) for ace. 11,12 € [0, 2], 11 > to. (54)
w
In Step 2 we prove that :
T
. 1
%1210 T‘/O /B BId—ug (T, t)dzdt = 0. (55)

Finally, in Step 3, we deduce from (54) and (55) that pj;q_5 = 0 a.e. in IR? x R4 and therefore that v(™ — @
in L1 (R? x Ry).

Step 1 (Proof of Assertion (54)).
In this step, we make use of the crucial following inequality, namely :

(/ A — (s, t)|dym,t(x))t + div (v(x, 0 / IfN) = f(a(a, t))|dym,t(x)) <o, (56)

in the distribution sense in IR?x]0,4+o0c[. For constant v, this assertion is proved in Theorem 4.1 of DiPerna
(1985) (where (4.16) should be read instead of (4.17)) in the one dimensional case. In Remark 3 of DiPerna
(1985), Theorem 4.1 is generalised to the multidimensional case which is of interest to us here. The proof may
be found in Gallouét, Herbin (accepted) for the case where v depends on ¢ and ¢. With (53), we can rewrite (56)
as :

/ tra—w|(z, 1)z, t)dedt —I—/ sy (z, t)v(z, t).grade(z, t)dedt > 0,
R2XR 4 R2xR4 (57)
V @ € Co(IR?x]0, +oo, R4).
Let T = ﬁ, 0<ti <to<T,0<e<min(ty,T —t2), § > 0. Let » € C:(IR4,[0,1]) with ¢» = 1 on [0,a], » = 0
w
on [a + &, +oof, and 9’ < 0. Let r. be defined by :

0, H0<t<t —e,
t—(t — .
(61 6), it —e<t<t],
Tg(t): 1, ift1 StStQ,
t -t .
Uzte) =t o ci<trte
&
0, if to +e <t < +o0.

Taking ¢(z,t) = ¢(|z| + wt) r-(t) in (57) (this is possible by taking regularisations of the functions r.), we prove
(see details in Gallouét, Herbin (accepted)) :

1 1

—/tl A(t)dt — —/t2+aA(t)dt2 0. (58)

3 3

Since A € L'(]0,T]) (in fact, 0 < A(t) < (r + ||¢o|oc )meas(Ba—w:)), we deduce (54) from (58). (More precisely,
if 1 and ¢; are Lebesgue points of A, then : 0 < ¢; <2 < T = A(t1) > A(t2)).

Step 2 (Proof of Assertion (55))
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Let ¢ € CZ(IR*,IR 1) and T > 0. We define p by

T

—1
_— fo<t<T
p(t) = 7 Hosis
0 if t>1T.

Let (ugn))n C C'(IR?,IR) be a sequence such that ”ugn)”m < ||uo]|so, for every n, and ug") — uo a.e. in IR? as
n — +oo. Taking n(s) = s in (52), (52) becomes an equality, which is valid for any ¢ € CZ(IR* x [0, +oo[,IR).
Then, taking regularisations of p, it is clear that we can take p(z,t) = zb(x)ugn)(x)p(t) This gives :

—%/OT /]R2 (uzd(x,t) - uo(x)) (o)ug" (v)dwdi+

T (59)
/0 /]R uf(x,t)v(x,t).grad(z/)(x)ug")(x))p(t)dxdt —o0.

Letting n tend to infinity, we obtain (see details in Gallouét, Herbin (accepted)) :

%1210%/; /]R (,“d(x,t) —uo(x))z/)(x)uo(x)dxdt: 0. (60)

Similarly, choosing @(z,t) = 1 (z)p(t) in (52) with n(s) = s>, we obtain :

T—o T

lim sup 1 /OT /]R2 (u|1d|2 (z,t) — uo(x)2)z/)(x)dxdt < 0. (61)

Therefore, for all 3 € C2(IR* IR 4), (60) and (61) imply :

T—0

T
. 1
lim sup T/ / (u|1d|2 (z,t) = 2pra(z, uo(z) + uo(x)2) Y(z)dzdt < 0. (62)
0o Jm2
from which we deduce :

T7—0 T

T
lim l‘/ / BId—ug ¥ (z)dzdt = 0. (63)
0o Jm2

Assertion (63) yields (55) taking ¢ =1 on B,.

Step 3 (conclusion of the proof of Theorem 2)
T

Using (55) and @(.,t) — wo in L},.(IR?) as t — 0, we deduce that %/ A(t)dt — 0 as t — 0. Using (54), we
0

conclude that A(t) = 0 a.e. on ]0,T[ ; since a is arbitrary, we conclude that pj;4_z = 0 a.e. in R? x Ry, so
that |u{™ —@| — 0 in L°(IR? x IR4) for the weak star topology ; therefore, (™ — @ in Li,.(IR? x Ry), and
in LV (R? x IR4) for any p < 4o (since u!™ is bounded in L®(IR? x IR4)) as m tends to +o0. The proof of

Theorem 2 is thereby complete. Note that we have also proved that vy = 6.+ for a.e. (z,t) € R? x Ry.

PrROOF OF THEOREM 1. Since the discretisations and k satisfy assumptions (4) and (5), Assertion (6) of
Theorem 1 is proven by Proposition 1.

Let @ be the entropy weak solution to (1) ; we prove Assertion (7) of Theorem 1 by contradiction : assume that
there exist po, such that 1 < po < 400, € > 0, K a compact subset of IR? x R4, and a sequence ((;, k;))iew such
that, for any ¢ € IN, (s, k;) satisfies assumptions (4) and (5) (with k; associated to ; in (4), h; — 0, as 1 — 00),
and

/ |k, —u|"dxdt > e. (64)
K

Using (6) of Theorem 1, we extract a subsequence of ((;, ki))icw, which we still denote ((, k:))iew, such that, for
any continuous function g from IR to IR, g(u, x,) — pg in L®(IR? x IR4) for the weak star topology, as i — co.
By Proposition 1, u, , satisfies condition (51) with r = ||ug||s, and, by proposition 4, u4 satisfies (52) ; therefore,
by Theorem 2, u, j; tends to @ in L2 _(IR? x R4 ) for any finite p, which contradicts (64).

loc
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